HIMPUNAN

imagesA.    Himpunan dan Notasinya

    1. Pengertian Himpunan

Himpunan adalah kumpulan benda/objek yang dapat didefinisikan dengan jelas.

Contoh:

1)  Kumpulan bunga-bunga indah.

Tidak dapat kita sebut himpunan karena bunga indah itu relatif (bunga indah  menurut seseorang belum tentu indah menurut orang lain).  Dengan kata lain, kumpulan bunga indah tidak dapat didefinisikan dengan jelas.

2)      Rombongan siswa SMP MUHI yang berwisata ke pula dewata adalah himpunan. Mengapa? Sebabnya ialah siswa-siswi yang berwisata kepulau dewata dapat diketahui dengan jelas.

  1. Menyatakan Suatu Himpunan

Suatu himpunan dapat dinyatakan dengan :

1)      Suatu kalimat

2)      Notasi pembentuk himpunan

3)      Mendaftar anggota-anggotanya

Untuk memberi nama pada suatu himpunan pada umumnya digunakan lambang huruf kapital.

Contoh:

H adalah tokoh-tokoh yang pernah menjadi presiden RI sebelum pemilu 2009. nyatakan himpunan tersebut dengan ketiga cara di atas:

Jawab:

1)      Dengan suatu kalimat

H = { tokoh-tokoh yang pernah menjadi presiden RI sebelum pemilu 2009}

2)      Dengan notasi pembentuk himpunan :

H = {x|x = tokoh-tokoh yang pernah menjadi presiden RI sebelum pemilu 2009}

3)      Dengan mendaftar anggota-anggotanya

H = {Soekarno, Soeharto, B.J. Habibie, Abdurrahaman Wahid, Megawati, Susilo Bambang Yudoyono}

  1. B.     Anggota Himpunan

Setiap benda/objek yang termasuk dalam suatu himpunan disebut anggota/unsur/elemen himpunan tersebut. Untuk menyatakan suatu objek merupakan anggota himpunan, ditulis dengan lambang “Δ sedangkan untuk menyatakan suatu objek bukan, anggota himpunan ditulis dengan lambang “Ï”

Misalkan H adalah himpunan huruf-huruf pada kata “MERDEKA”  maka H adalah himpunan  yang anggota-anggotanya terdiri atas huruf-huruf M, E, R, D, E, K dan A.  Huruf M, E, R, D, E, K dan A termasuk anggota himpunan H, ditulis M Î H, E Î H, R Î H, dan E Î H, K Î H dan A Î H sedangkan L bukan anggota H atau ditulis L Î H.

Banyaknya anggota himpunan H adalah 6 buah, yaitu M, E, R, D, E, K dan A ditulis n(H) = 6.

Himpunan dengan banyak anggota berhingga disebut himpunan hingga, sedangkan himpunan dengan banyak anggota tidak berhingga disebut himpunan tidak berhingga.

Misalnya, A adalah himpunan bilangan asli, maka anggota-anggota adalah 1, 2, 3, 4, 5, 6, dan seterusnya yang tidak pernah berakhir. Banyak anggota himpunan A adalah tidak berhingga, ditulis n(A) = tidak berhingga.

  1. C.    Himpunan Bagian
    1. Pengertian Himpunan Bagian

Perhatikan himpunan-himpunan berikut:

A = {himpunan hewan}

B = {himpunan hewan berkaki empat}

C = {himpunan hewan berkaki empat yang bertelur}

Misalkan A, B dan C adalah sebagai berikut:

A = {kucing, anjing, buaya, kura-kura, burung}

B = {kucing, anjing, buaya, kura-kura}

C = {buaya, kura-kura}

Jika kita perhatikan, setiap anggota himpunan B merupakan anggota himpunan A, ditulis B Ì A dan setiap anggota himpunan C merupakan anggota himpunan B, ditulis C Ì B. Namun, kita tidak dapat menuliskan A Ì B karena ada anggota A yang bukan merupakan anggota B, yaitu burung. Oleh karena itu himpunan yang demikian ditulis A Ë B

  1. Menentukan banyak himpunan bagian

Perhatikan himpunan-himpunan berikut!

A = {a}, banyaknya himpunan bagian ada 2 yaitu {a} dan Æ

A = {a, b}, banyaknya himpunan bagian ada 4 yaitu {a} {b} {a, b} dan Æ

A = {a, b, c }, banyaknya himpunan bagian ada 8 yaitu {a} {b} {c} {a, b} {a, c} {b,c} {a,b,c} dan Æ

Jika kita perhatikan banyak himpunan bagian dari himpunan A diperoleh pernyataan sebagai berikut:

Jika n(A) = 1, banyak himpunan bagaimana 2 = 21

Jika n(A) = 2, banyak himpunan bagaimana 4 = 22

Jika n(A) = 3, banyak himpunan bagaimana 8 = 23

Demikian seterusnya

Dengan demikian, dapat disimpulkan sebagai berikut:

Contoh:

Tentukan banyaknya himpunan bagian dari A jika A = {1,2,3,4}

Jawab:

n(A) = 4

jadi, N = 24 = 16

Himpunan bagian dari A adalah sebagai berikut:

{1} {2} {3} {4}{1,2} {1,3} {1,4} {2,3} {2,4} {3,4} {1,2,3} {1,2,4} {1,3,4}  {2,3,4} {1,2,3,4}

  1. D.    Himpunan Kosong d­an Himpunan Semesta
    1. Himpunan Kosong

Himpunan kosong adalah suatu himpunan yang tidak mempunyai anggota dan dinotasikan dengan Æ atau {}

Contoh:

Jika H adalah himpunan nama-nama hari yang dimulai dengan huruf B, nyatakan dalam notasi himpunan L

Jawab :

H = Æ atau H = {} karena tidak ada nama hari yang dimulai dengan huruf B.

  1. Himpunan Semesta

Himpunan semesta atau semesta pembicaraan adalah himpunan yang memuat semua objek yang sedang dibicarakan. Hal ini berarti semesta pembicaraan mempunyai anggota yang sama atau lebih banyak dari pada himpunan yang sedang dibicarakan. Himpunan semesta disebut juga himpunan universal dan disimbolkan S atau U.

Contoh :

R = {3,5,7}

Himpunan semesta  yang mungkin untuk himpunan R diantaranya adalah

  1. S = R = {3,5,7}
  2. S = {bilangan ganjil}
  3. S = {bilangan cacah}
  4. S = {bilangan prima}
  5. E.     Diagram Venn

Himpunan dapat dinyatakan dalam bentuk gambar yang dikenal sebagai diagram Venn. Diagram Venn diperkenalkan oleh pakar Matematika, Inggris pada tahun 1834-1923 bernama John Venn dalam membuat diagram Venn yang perlu diperhatikan yaitu:

  1. Himpunan semesta (S) digambarkan sebagai persegi panjang dan huruf S diletakkan di sudut kiri atas persegi panjang
  2. Setiap himpunan yang dibicarakan (selain himpunan kosong) ditunjukkan oleh kurva tersebut.
  3. Setiap anggota ditunjukkan dengan noktah (titik)
  4. Bila anggota suatu himpunan banyak sekali, maka anggota-anggotanya tidak perlu dituliskan.

Contoh:

Buatlah diagram Venn dari himpunan-himpunan berikut ini S = {1,2,3,4,5,6,7} dan A = {4,5}, dan R {1,3,6}

S     R          . 2              A

. 7

Jawab

Diagram untuk himpunan S, A, R adalah seperti pada gambar disamping. Anggota A dan anggota R tidak ada yang sama, maka diagram untuk A dan R terpisah.

  1. F.     Irisan dan Gabungan Dua Himpunan
    1. Irisan Dua Himpunan
  • Pengertian irisan dua himpunan

Jika P = {1,2,3,4} dan Q = {3,4,5} maka 3 dan 4 adalah anggota sekutu dari P dan Q. sedangkan 1 dan 2 menjadi anggota P tetapi bukan anggota Q dan 5 menjadi anggota Q tetapi bukan anggota P. Himpunan yang memuat semua anggota sekutu dari P dan Q disebut irisan dari P dan Q; ditulis P Ç Q = {3,4}

Contoh:

A = {bilangan asli yang kurang dari 6}

B = {2,4,6}

  1. Tentukan A Ç B
  2. Lukiskan dengan diagram Venn

Jawab :

  1. A = {1,2,3,4,5}

B = {2,4,6} maka A Ç B = {2,4}

  1. Gabungan [È] dua himpunan

Gabungan dari dua buah himpunan akan menghasilkan suatu himpunan baru yang anggotanya terdiri dari anggota kedua himpunan tersebut. Operasi gabungan pada himpunan disimbolkan dengan “È”.

Misalkan P = {2,3,4,5} dan Q = {1,2,4,6}  maka P È Q = {1,2,3,4,5,6}

Gabungan dari P dan Q adalah himpunan yang semua anggotanya terdapat pada P atau Q. ditulis dengan notasi pembentuk himpunan: P È Q = {x| x ÎP atau x Î Q }

  1. Komplemen

Misalkan:

S = {1,2,3,4,5,6,7}

Q = {2,3,4,}

Himpunan S yang anggotanya selain anggota himpunan Q adalah {1,5,6,7}. Himpunan bagian dari S ini disebut komplemen Q dan ditulis Q1 atau (Qc), Q1 dibaca ‘komplemen Q” atau “bukan Q”.

Berdasarkan diagram Venn disamping diperoleh:

1)      Q Ç Q1 = Æ

2)      Q È Q1 = S

3)      n (Q) + n(Q1) = n(S)

Komplemen dari S ditulis S1. karena S merupakan himpunan semesta maka S1 adalah himpunan kosong dan ditulis S1 = Æ, sebaliknya Æ1 = S dari uraian dapat disimpulkan:

  1. Æ1 = S
  2. S1 = Æ
  3. (A1)1 = A
  1. G.    Menyelesaikan Masalah dengan Menggunakan Konsep Himpunan

Untuk menyelesaikan masalah yang berhubungan dengan konsep himpunan dapat digunakan contoh:

  1. Dari sekelompok siswa terdapat 22 orang gemar voli, 20 orang gemar tenis meja, dan 12 orang gemar kedua-duanya
    1. Gambarlah diagram Venn untuk menunjukkan keadaan tersebut!
    2. Berapa jumlah siswa yang terdapat pada kelompok tersebut?

Jawab:

S     Voli           Tenis meja

 

 

 

 

 

 

 

 

a.

b. Jumlah siswa yang terdapat pada kelompok tersebut adalah 10 + 12 + 18 = 30 orang

  1. Suatu kelas terdiri atas 40 siswa. dari 40 siswa tersebut terdapat 15 siswa senang bermain basket 20 siswa senang sepakbola, dan 10 siswa senang kedua-duanya
    1. Gambarlah diagram Venn dari soal diatas!
    2. Berapa siswa yang tidak senang baik basket maupun sepak bola
    3. Berapa siswa yang senang basket saja?
    4. Berapa siswa yang senang sepakbola saja?

Jawab:

S     Basket     Sepak Bola

 

 

 

 

 

 

 

.15

a.

b.   Jumlah siswa yang tidak senang baik bermain basket maupun sepak bola adalah  40-5-10-10 = 15 orang

c.   Jumlah siswa yang senang basket saja adalah 15-10 = 5 orang

d.   Jumlah siswa yang senang sepak bola saja adalah 20-10 = 10 orang

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: